Partager vos conaissances avec nous! Inscription RAPIDE!
Accueil Climat Désastres Inondation Lieux Météo Nature Records Météo Tempêtes Quiz Diaporama Autre Blogues Forums
Email
Mot de Passe
Connexion |
Infos Pratiques
Réchauffement Climatique
Climat Futur
Co2
Calotte Glacière
Glace de Mer NSIDC
Informations en directe des ouragans
Ouragans Caméras Live
Températures de surface des Océans
Gas à effet de serre
GES/ Pays et Personnes
Carte Interactive
Glaciers (132,699)
Grottes (+ 2,400)
Ouragans ( 6,916)
Montagnes (+ 5,000)
Séismes (+7,000)
Tornades Canada (+500)
Tornades USA (+ 56,000)
Unesco Sites (959)
Villes (+ 2.5 million)
Volcans (+ 1,500)
Records Température
2754 Stations Météorologique Températures par Pays
Canada
États-Unis
France
Royaume Uni
Ouragans
Basse Pression Record
Beaufort - Saffir-Simpson
Nombre depuis 1848
Ouragans Plus Coûteux
Ouragans Plus Meurtriés
Ouragan Wiki
Vents Record
Tornades
Tornades au Canada
Canada Stats
Tornades aux États-Unis
Stats Tornades US
Recherche Tornades USA
Plus Haute Montagnes
Plus Haute Montagnes
Records Autres
Extrêmes sur Terre
Extrêmes dans l'Air
Extrêmes de l'Eau
Extrêmes du Feu
Mer d'Aral
Planète Terre
Séismes temps réel
Séismes Meurtriers
Séismes Puissants
Tempêtes
Demographie
Population par Pays
Ville du Monde
Wiki
Wiki Climat
Mer D'Aral
Terre
Climat Infographie

Définition et Caractéristiques de la Planète Terre


Planète Terre

La Terre est la troisième planète du Système solaire par ordre de distance croissante au Soleil, et la quatrième par taille et par masse croissantes. Il s'agit de la plus grande et la plus massive des quatre planètes telluriques, les trois autres étant Mercure, Vénus et Mars. La Terre se trouve dans la zone habitable du Système solaire. Elle est couramment appelée en français Terre, planète Terre, planète bleue ou encore Monde.

La Terre s'est formée il y a 4,54 milliards d'années environ et la vie apparut moins d'un milliard d'années plus tard. La planète abrite des millions d'espèces dont les humains. La biosphère de la Terre a fortement modifié l'atmosphère et les autres caractéristiques abiotique de la planète, permettant la prolifération d'organismes aérobies de même que la formation d'une couche d'ozone, qui associée au champ magnétique terrestre, bloque une partie des rayonnements solaires permettant ainsi la vie sur Terre. Les propriétés physiques de la Terre de même que son histoire géologique et son orbite ont permis à la vie de subsister durant cette période et la Terre devrait pouvoir supporter la vie durant encore au moins 500 millions d'années.

La croûte terrestre est divisée en plusieurs segments rigides appelés plaques tectoniques qui se déplacent sur des millions d'années. Environ 71 % de la surface terrestre est couverte par des océans d'eau salée qui forment l'hydrosphère avec les autres sources d'eau comme les lacs ou les nappes phréatiques. Les pôles géographiques de la Terre sont principalement recouverts de glace (inlandsis de l'Antarctique) ou de banquises. L'intérieur de la planète reste actif avec un épais manteau composé de roches plus ou moins fondues, un noyau externe liquide qui génère un champ magnétique et un noyau interne de fer solide.

La Terre interagit avec les autres objets spatiaux, principalement le Soleil et la Lune. Actuellement, la Terre orbite autour du Soleil en 365,26 jours solaires ou une année sidérale. L'axe de rotation de la Terre est incliné de 23,4° par rapport à la perpendiculaire du plan de l'écliptique, ce qui produit des variations saisonnières sur la surface de la planète avec une période d'une année tropique (365,24 jours solaires). Le seul satellite naturel connu de la Terre est la Lune qui commença à orbiter il y a 4,5 milliards d'années. Celle-ci provoque des marées, stabilise l'inclinaison axiale et ralentit lentement la rotation terrestre. Il y a environ 3,8 milliards d'années, lors du grand bombardement tardif, de nombreux impacts d'astéroïdes causèrent d'importantes modifications de sa surface.

La Terre a pour particularité d'être le seul endroit de l'univers connu pour abriter la vie, et accessoirement l'espèce humaine. Les cultures humaines ont développé de nombreuses représentations de la planète, dont une personnification en tant que déité, la croyance en une terre plate, la Terre en tant que centre de l'univers et la perspective moderne d'un monde en tant que système global nécessitant une gestion raisonnable.

La science qui étudie la Terre est la géologie. Compte tenu de l'influence de la vie sur la composition de l'atmosphère, des océans et des roches sédimentaires, la géologie emprunte à la biologie une partie de sa chronologie et de son vocabulaire.

Évolution de la vie

On suppose qu'une activité chimique intense dans un milieu hautement énergétique a produit une molécule capable de se reproduire, dans un système particulier, il y a environ 4 milliards d'années. La vie elle-même serait apparue entre 200 et 500 millions d'années plus tard.

Le développement de la photosynthèse, active depuis bien avant 3 (à 3,5) milliards d'années avant le présent, permit à la vie d'exploiter directement l'énergie du Soleil. Celle-ci produisit de l'oxygène qui s'accumula dans l'atmosphère, à partir d'environ 2,5 milliards d'années avant le présent, et forma la couche d'ozone (une forme d'oxygène) dans la haute atmosphère, lorsque les niveaux d'oxygène dépassèrent quelques %. Le regroupement de petites cellules entraina le développement de cellules complexes appelées eucaryotes. Les premiers organismes multicellulaires formés de cellules au sein de colonies devinrent de plus en plus spécialisés. Aidée par l'absorption des dangereux rayons ultraviolets par la couche d'ozone, des colonies bactériennes pourraient avoir colonisé la surface de la Terre, dès ces époques lointaines. Les plantes et les animaux pluricellulaires colonisèrent la terre ferme qu'à partir de la fin du Cambrien (pour les premiers végétaux, mousses, lichens et champignons) et pendant l'Ordovicien (pour les premiers végétaux vasculaires et les arthropodes), le Silurien (pour les gastéropodes ?) et le Dévonien (pour les vertébrés).

Depuis les années 1960, il a été proposé une hypothèse selon laquelle une ou une série de glaciations globales eut lieu il y a 750 à 580 millions d'années, pendant le Néoprotérozoïque, et qui couvrit la planète d'une couche de glace. Cette hypothèse a été nommée Snowball Earth (« Terre boule de neige »), et est d'un intérêt particulier parce qu'elle précède l'explosion cambrienne, quand des formes de vies multicellulaires commencèrent à proliférer.

À la suite de l'explosion cambrienne, il y a environ 535 millions d'années, cinq extinctions massives eurent lieu31. La dernière extinction majeure date de 65 millions d'années, quand une météorite est entrée en collision avec la Terre, exterminant les dinosaures et d'autres grands reptiles, épargnant de plus petits animaux comme les mammifères, oiseaux, lézards, etc.

Dans les 65 millions d'années qui se sont écoulées depuis, les mammifères se sont diversifiés, l'espèce humaine s'étant développée depuis deux millions d'années. Des changements périodiques à long terme de l'orbite de la Terre, causés par l'influence gravitationnelle des autres astres, sont probablement une des causes des glaciations qui ont plus que doublé les zones polaires de la planète, périodiquement dans les derniers millions d'années.

À l'issue de la dernière glaciation, le développement de l'agriculture et, ensuite, des civilisations, permit aux humains de modifier la surface de la Terre dans une courte période de temps, comme aucune autre espèce avant lui sur Terre, affectant la nature tout comme les autres formes de vie.

Composition et structure

La Terre est une planète tellurique, c'est-à-dire une planète essentiellement rocheuse à noyau métallique, contrairement aux géantes gazeuses, telles que Jupiter, essentiellement constituées de gaz légers (hydrogène et hélium). Il s'agit de la plus grande des quatre planètes telluriques du Système solaire, que ce soit par la taille ou la masse. De ces quatre planètes, la Terre a aussi la masse volumique globale la plus élevée, la plus forte gravité de surface, le plus puissant champ magnétique global, la vitesse de rotation la plus élevée et est probablement la seule avec une tectonique des plaques active.

La surface externe de la Terre est divisée en plusieurs segments rigides, ou plaques tectoniques, qui se déplacent lentement sur la surface sur des durées de plusieurs millions d'années. Environ 71 % de la surface est couverte d'océans d'eau salée, les 29 % restants étant des continents et des îles. L'eau liquide, nécessaire à la vie telle que nous la connaissons, est très abondante sur Terre, et aucune autre planète n'a encore été découverte avec des étendues d'eau liquide (lacs, mers, océans) à sa surface.

Forme

Comparaison des tailles des planètes telluriques avec de gauche à droite : Mercure, Venus, la Terre et Mars La forme de la Terre est approchée par un ellipsoïde, une sphère aplatie aux pôles. La rotation de la Terre entraine l'apparition d'un léger bourrelet de sorte que le diamètre à l’équateur est 43 kilomètres plus long que le diamètre polaire (du pôle Nord au pôle Sud). Le diamètre moyen du sphéroïde de référence (appelé géoïde) est d'environ 12 742 kilomètres, ce qui est approximativement 40 000 kilomètres/π, car le mètre était initialement défini comme 1/10 000 000e de la distance de l'équateur au pôle nord en passant par Paris.

La topographie locale dévie de ce sphéroïde idéalisé même si à grande échelle, ces variations sont faibles : La Terre a une tolérance d'environ 0,17 % par rapport au sphéroïde parfait, ce qui est moins que la tolérance de 0,22 % imposée aux boules de billard45. Les plus grandes variations dans la surface rocheuse de la Terre sont l'Everest (8 848 mètres au-dessus du niveau de la mer) et la fosse des Mariannes (10 911 mètres sous le niveau de la mer). Du fait du bourelet équatorial, les lieux les plus éloignés du centre de la Terre sont les sommets du Chimborazo en Équateur et du Huascarán au Pérou.

Composition chimique

La masse de la Terre est d'approximativement 5,98×1024 kg. Elle est principalement composée de fer (32,1 %50), d'oxygène (30,1 %), de silicium (15,1 %), de magnésium (13,9 %), de soufre (2,9 %), de nickel (1,8 %), de calcium (1,5 %) et d'aluminium (1,4 %), le 1,2 % restant consistant en de légères traces d'autres éléments. Les éléments les plus denses ayant tendance à se concentrer au centre de la Terre (phénomène de différenciation planétaire), on pense que le cœur de la Terre est composé majoritairement de fer (88,8 %), avec une plus petite quantité de nickel (5,8 %), de soufre (4,5 %) et moins de 1 % d'autres éléments51.

Le géochimiste F. W. Clarke a calculé que 47 % (en poids) de la croûte terrestre était faite d'oxygène, présent principalement sous forme d'oxydes, dont les principaux sont les oxydes de silicium, d'aluminium, de fer, de calcium, de magnésium, de potassium et de sodium. La silice est le constituant majeur de la croûte, sous forme de pyroxénoïdes, les minéraux les plus communs des roches magmatiques et métamorphiques. Après une synthèse basée sur l'analyse de 1 672 types de roches, Clarke a obtenu les pourcentages présentés dans le tableau ci-dessous.

Structure interne

L'intérieur de la Terre, comme celui des autres planètes telluriques, est stratifié, c'est-à-dire organisé en couches concentriques superposées, ayant des densités croissantes quand on s'enfonce. Ces diverses couches se distinguent par leur nature pétrologique (contrastes chimiques et minéralogiques) et leurs propriétés physiques (changements d'état physique, propriétés rhéologiques). La couche extérieure de la Terre solide, fine à très fine relativement au rayon terrestre, s'appelle la croûte ; elle est solide, et chimiquement distincte du manteau, solide, sur lequel elle repose ; sous l'effet combiné de la pression et de la température, avec la profondeur, le manteau passe d'un état solide fragile (cassant, sismogène, « lithosphérique ») à un état solide ductile (plastique, « asthénosphérique », et donc caractérisé par une viscosité plus faible, quoiqu'encore extrêmement élevée). La surface de contact entre la croûte et le manteau est appelée le Moho ; il se visualise très bien par les méthodes sismiques du fait du fort contraste de vitesse des ondes sismiques, entre les deux côtés. L'épaisseur de la croûte varie de 6 kilomètres sous les océans jusqu'à plus de 50 kilomètres en moyenne sous les continents. La croûte et la partie supérieure froide et rigide du manteau supérieur sont appelés lithosphère ; leur comportement horizontalement rigide à l'échelle du million à la dizaine de millions d'années est à l'origine de la tectonique des plaques. L'asthénosphère se trouve sous la lithosphère et est une couche convective, relativement moins visqueuse sur laquelle la lithosphère se déplace en « plaques minces ». Des changements importants dans la structure cristallographique des divers minéraux du manteau, qui sont des changements de phase au sens thermodynamique, vers respectivement les profondeurs de 410 kilomètres et de 670 kilomètres sous la surface, encadrent une zone dite de transition, définie initialement sur la base des premières images sismologiques. Actuellement, on appelle manteau supérieur la couche qui va du Moho à la transition de phase vers 670 kilomètres de profondeur, la transition à 410 kilomètres de profondeur étant reconnue pour ne pas avoir une importance majeur sur le processus de convection mantellique, au contraire de l'autre. Et l'on appelle donc manteau inférieur la zone comprise entre cette transition de phase à 670 kilomètres de profondeur, et la limite noyau-manteau. Sous le manteau inférieur, le noyau terrestre, composé à presque 90 % de fer métal, constitue une entité chimiquement originale de tout ce qui est au-dessus, à savoir la Terre silicatée. Ce noyau est lui-même stratifié en un noyau externe liquide et très peu visqueux (viscosité de l'ordre de celle d'une huile moteur à 20 °C), qui entoure un noyau interne solide encore appelé graine. Cette graine résulte de la cristallisation du noyau du fait du refroidissement séculaire de la Terre. Cette cristallisation, par la chaleur latente qu'elle libère, est source d'une convection du noyau externe, laquelle est la source du champ magnétique terrestre. L'absence d'un tel champ magnétique sur les autres planètes telluriques laisse penser que leurs noyaux métalliques, dont les présences sont nécessaires pour expliquer les données astronomiques de densité et de moment d'inertie, sont totalement cristallisés. Selon une interprétation encore débattue de données sismologiques, le noyau interne terrestre semblerait tourner à une vitesse angulaire légèrement supérieure à celle du reste de la planète, avançant relativement de 0,1 à 0,5° par an.
Inscrivez vous pour pouvoir utiliser Record Météo
Inscription RAPIDE!
Aimez notre page Facebook pour plus de nouvelles



Record Meteo recherche des blogeurs et des modérateurs pour les forums!

Record Meteo Forum Stats

Sujets: 265,308
Vus: 291,777
Réponses: 1


Contactez Nous | À propos de Nous | Politique | Termes d'utilisation | Équipe de l'édition | Publicité
Centre Canadien des Tornades | Tornadoespath.com | Our Datasets | POI Files

Copyright Mai 2007 | Fri Nov 24 05:23


Nouvelles: 264 | Vue(s): 193049:)
16/12/2012: 50,091,101